

See discussions, stats, and author profiles for this publication at: <https://www.researchgate.net/publication/325065900>

SPECIES DIVERSITY IN LENTIC, LOTIC, MARINE AND TERRESTRIAL BIOTOPES OF GOKCEADA SALT LAKE WETLAND (CANAKKALE, TURKEY)

Article in *Fresenius Environmental Bulletin* · May 2018

CITATION

1

READS

753

8 authors, including:

Herdem Aslan

Çanakkale Onsekiz Mart Üniversitesi

33 PUBLICATIONS 120 CITATIONS

[SEE PROFILE](#)

Onur Gonulal

Istanbul University

41 PUBLICATIONS 110 CITATIONS

[SEE PROFILE](#)

Elif Can Yilmaz

Dokuz Eylul University

20 PUBLICATIONS 114 CITATIONS

[SEE PROFILE](#)

Ozgur Baytut

Ondokuz Mayıs Üniversitesi

33 PUBLICATIONS 106 CITATIONS

[SEE PROFILE](#)

Some of the authors of this publication are also working on these related projects:

Capacity Building on Marine Strategy Framework Directive in Turkey [View project](#)

EU Horizon MSCA ITN ETN project proposal CliCRisk-EnvH [View project](#)

SPECIES DIVERSITY IN LENTIC, LOTIC, MARINE AND TERRESTRIAL BIOTOPES OF GOKCEADA SALT LAKE WETLAND (CANAKKALE, TURKEY)

Herdem Aslan^{1,*}, Onur Gonulal², Elif Can-Yilmaz³, Belgin Elipek⁴, Ozgur Baytut⁵, Murat Tosunoglu⁶, Ersin Karabacak⁶, Yusuf Kurt⁶

¹Department of Fisheries Technology, Gokceada School of Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey

²Faculty of Fisheries, Istanbul University, Laleli, Istanbul, Turkey

³Institute of Marine Sciences and Technology Dokuz Eylul University, 35430, Izmir, Turkey

⁴Department of Biology, Faculty of Sciences, Trakya University, 22030, Edirne, Turkey

⁵Department of Biology, Faculty of Arts and Sciences, Ondokuz Mayis University, 55139, Kurupelit-Samsun, Turkey

⁶Department of Biology, Faculty of Arts and Sciences, Canakkale Onsekiz Mart University, Canakkale, Turkey

ABSTRACT

This study was carried out to provide detailed information on species diversity and community structure of Gökçeada Salt Lake Wetland (brook feeding the lake, neighboring sea and terrestrial area around the wetland). Aquatic species diversity (algae, invertebrates, and fish) at 9 different stations in freshwater, brackish water and marine ecosystems, and terrestrial species diversity (plants, amphibians, reptiles, birds and mammals) in the surrounding wetland were studied seasonally in 2016. A total of 195 taxa of terrestrial vascular flora and 134 species of aquatic flora (97 species of phytoplankton, 37 species of benthic algae); a total of 23 macrobenthic invertebrate taxa from the lake and 131 invertebrate species from the sea were identified. Also, 4 fish, 14 reptiles, 3 amphibians and 71 bird species were observed in the study area. While one species of phytoplankton was determined as a new record for the Turkish aquatic flora, a total of 71 marine invertebrate species were reported for the first time in the marine fauna of Gökçeada. The obtained data will not only provide a solid basis to expand the understanding of the island's ecosystem, but also will serve as an important tool in the action plans for wetland conservation.

KEYWORDS:

Salt Lake, Gökçeada, diversity, Imbros, wetlands

INTRODUCTION

Wetlands are one of the most important ecosystems on Earth because of their rich biodiversity, natural value and economic benefits. To be able to ensure the sustainability of these ecosystems, it is essential to investigate and learn more about their ecological balance. Wetlands have a rich and specialized biodiversity due to their structures and

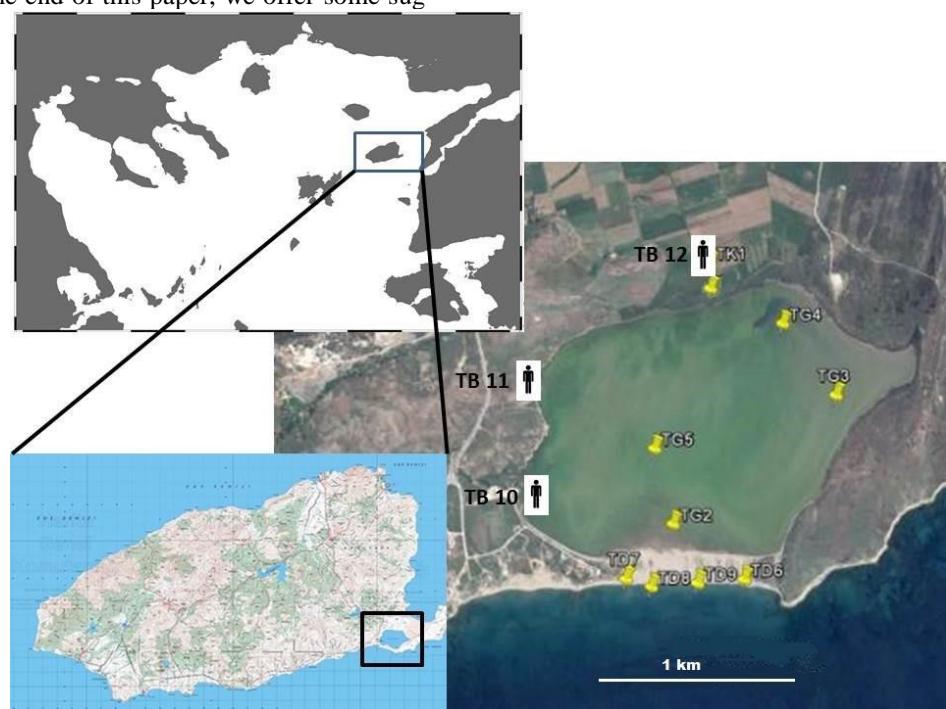
locations between the terrestrial and aquatic areas; therefore, they serve as rich ecosystems for the inhabitants living in these areas and also provide multiple ecosystem services to humans [1]. Several previous studies have determined the biological diversity in wetlands [2-9].

Coastal lagoons have special hydrodynamic perspective and very sensitive structures [10]. They are particularly important aquatic ecosystems, usually located near a sea and relatively isolated from the sea by coastal barriers [11]. Coastal lagoons range from nearly fresh to hypersaline waters, and can be fed by freshwater from a stream or salt water from the sea. Therefore, their species diversity may change seasonally within an ecological balance. Also, any artificial influence to these sensitive areas may cause the destruction of the natural balance within those areas [10]. Incidentally, lagoons and their surrounding areas may also serve the tourism sector. Therefore, it is very hard to maintain their sustainability. For this reason, it is necessary to know their hydrobiological structures to protect their ecological balance.

In Turkey, wetlands cover more than 60,000 ha and almost 50% of those areas are located in the Mediterranean Region, followed by the Aegean Region (35%) [12]. Lagoons are targeted as marine protected areas due to the remarkable biodiversity they hold in the ecosystems as a result of the influence of both marine and terrestrial factors [13]. Many species can be ecologically and/or commercially important [14, 15]. They provide goods and services for humans besides their ecological role [16]. Thus, monitoring of these ecosystems is essential for the spatio-temporal changes in organisms and the sustainability of these areas. Determining the changes in organisms living in the aquatic system is the best method for identifying threats. The persistence of the local species and biodiversity are directly related to the protection of the wetland. In this study, the wetland system of Gökçeada Salt Lake including the reptiles, amphibians and bird

species from the surrounding terrestrial area was monitored seasonally in 2016 to determine the aquatic species diversity from the lake and the neighboring.

Gökçeada is the biggest island of Turkey, covering an area of 290 km², with a 95 km coastline situated on the north Aegean Sea (40°05' – 40°14' N 25°39' – 26°00' E). The southwesterly and northeasterly winds are prevalent on the island. The Gökçeada Salt Lake is also called Gökçeada Lagoon, which is on the list of Wetlands of International Importance of Turkey and a suitable habitat for bird species under conservation protection [17].


Previous studies were conducted on terrestrial vegetation, fresh and marine fauna, ornithofauna and herpetological features of Gökçeada including the Salt Lake [17-32]. But, except one study [17], none of these studies focused on determining the diversity of the species in Gökçeada Salt Lake Wetland. The Gökçeada Salt Lake Wetland has not been sufficiently protected. It is close to the settlement areas with considerable tourism pressure especially in summer months. And ecological shifts have not been explained scientifically.

This study aims to improve the overall knowledge of the species diversity of the Gökçeada Salt Lake Wetland and to provide information on spatiotemporal variation of the species in lentic, lotic, marine and terrestrial biotopes. As such, algae, plants, invertebrates (except terrestrial and semi-aquatic insects) and vertebrates were investigated. At the end of this paper, we offer some sug-

gestions for the sustainable use and ecological management of the Gökçeada Salt Lake Wetland.

MATERIALS AND METHODS

Studied Area and Sampling Locations. The Salt Lake Wetland is located in the southeast of Gökçeada Island, in the Aydincik region (Figure 1). The surface area of the lake is approximately 2 km² with an average depth of 1-2 m. The lake is connected with the sea when the southwesterly winds are strong. Overall, nine sampling stations to determine aquatic flora and fauna in the study area were selected. While one of them was chosen as lotic biotope in the stream feeding of the Salt Lake (TK1), the other four stations, located on the lake, were chosen as lentic biotope (TG2, TG3, TG4 and TG5). Four farther stations were chosen from the sea as marine biotope (TD6, TD7, TD8, and TD9) (Figure 1, Table 1). The sampling for fish was made at the same time as the sampling of marine macrozoobenthos. Terrestrial plants, amphibians, reptiles and mammal specimens were observed in the wetland with an area of 6.883 hectares. While all these samplings and observations were made at the selected stations at seasonal intervals between January 2016 and December 2016, only the bird observations were conducted monthly from three regions (TB10, TB11 and TB12).

FIGURE 1
The map of sampling area

TABLE 1
Information of sampling stations (van Veen grab: VG, Plankton net: PN, Sampling bottle: SB, Beam trawl: BT, Binocular: B, Camera: C)

Station No	Biotope	Coordinate	Date	Sampling tool	Depth (m)	Station No	Biotope	Coordinate	Date	Sampling tool	Depth (m)
TK1	Stream	40 08 254 25 57 087	09.01.2016 08.05.2016 09.08.2016 13.11.2016	VG, PN, SB	0.1	TD6	Sea	40 07 522 25 57 171	29.02.2016 28.05.2016 02.08.2016 17.11.2016	BT, PN	1.5
TG2	Salt lake	40 07 481 25 57 231	08.01.2016 08.05.2016 09.08.2016 13.11.2016	VG, PN, SB	0.3	TD7	Sea	40 07 501 25 57 162	29.02.2016 28.05.2016 02.08.2016 17.11.2016	VG, PN	8.0
TG3	Salt lake	40 07 587 25 57 498	08.01.2016 08.05.2016 09.08.2016 13.11.2016	VG, PN, SB	0.3	TD8	Sea	40 07 433 25 57 251	29.02.2016 28.05.2016 02.08.2016 17.11.2016	BT, PN	5.0
TG4	Salt lake	40 07 652 25 57 041	08.01.2016 08.05.2016 09.08.2016 13.11.2016	VG, PN, SB	0.3	TD9	Sea	40 07 464 25 57 325	29.02.2016 28.05.2016 02.08.2016 17.11.2016	VG, PN	7.0
TG5	Salt lake	40 08 013 25 57 143	09.01.2016 08.05.2016 09.08.2016 13.11.2016	VG, PN, SB	1.2	TB10	Wetland	40 07 342 25 57 125	Every Month	B, C	-
						TB11	Wetland	40 07 421 25 57 110	Every Month	B, C	-
						TB12	Wetland	40 08 178 25 56 145	Every Month	B, C	-

Algal samplings. Water samples were taken from nine stations at depths of 0.1-8 m using a Hydro-Bios Free Flow Water Sampler (2.5 liters) to obtain the phytoplankton samples. Also, a plankton net with a 20 µm mesh size was used to evaluate the phytoplankton qualitatively, and a glass tube with a diameter of 0.8 cm and a length of 1 m was used to collect the epipelagic algal samples from lentic and lotic biotopes. All phytoplankton samples were transferred into plastic bottles and fixed with 5% formalin. Before the phytoplanktonic organisms were counted, the water samples were homogenized at a low speed until the sediment was thoroughly mixed and were of uniform consistency. Three water-mounted slides for each sample were examined and living diatoms were collected at each station to obtain an estimate of the algal relative abundance [33, 34]. At least 500 algal cells were counted at 600x magnification. Permanent slides for the identification of diatoms were prepared from the same sample after boiling in a 1:1 mixture of concentrated H₂SO₄ and HNO₃. The acid-cleaned diatoms were mounted in Naphrax high refractive index medium [4]. Microscopic observations were conducted under a Prior phase-contrast inverted microscope and a Prior phase-contrast. The Lugol-fixed water samples were concentrated to 1-3 ml and then counted in the Sedgewick-Rafter chamber for the marine samples and utermohl counting chambers for the lotic and lentic phytoplankton samples under an inverted microscope [35]. New records of taxa from the Turkish Algal Flora were checked according to Aysel [36]. Furthermore,

valid taxa names and arrangement of taxonomic groups were determined according to the website of [37].

Macroinvertebrates and Fish Samples. Sediment samples were taken from a total of five different sampling stations (TK1, TG2, TG3, TG4, and TG5) by van Veen Grab (15 x 15 cm²) twice at each station. However, the sampling could not be done at the sampling station TG4 in autumn because of the drying. The obtained material was put into the plastic bottles including 70% ethanol after using a sieve. The specimens were identified from papers by [38-44]. All samples were preserved in 70% ethanol.

For the marine macrozoobenthic community sampling, we made three replicates by using a 0.1 m² van Veen Grab in two sampling stations (TD7 & TD9) and by using a beam trawl in the other two stations (TD6 & TD8). All sediment samples were sieved on deck through 0.5 mm size mesh and preserved in a formaldehyde seawater solution (4-5%) for further analyses. The samples were evaluated with ÇOMÜ-3 R/V and İ.U Fırtına R/V. The macrozoobenthic samples were sorted and identified to the lowest possible taxonomic level (typically species level) with Olympus SZX-16 stereomicroscope and light microscope, preserved in 70% ethanol. Also, the fish species were obtained by means of the beam trawl in the marine sampling locations. WoRMS is followed here for the nomenclature of the species [45].

TABLE 2
Literatures and field studies are the result of species and subtaxa list of vascular plants

APIACEAE	<i>Spergularia marina</i> (L.) Besser	<i>Iris suaveolens</i> Boiss. & Reut.	<i>Bromus tectorum</i> L.
<i>Apium nodiflorum</i> (L.) Lag.	<i>Stellaria media</i> (L.) Vill.	<i>Romulea linaresii</i> Parl.	<i>Catapodium rigidum</i> (L.) C.E.Hubb.
<i>Lagoecia cuminoides</i> L.	<i>Velezia quadridentata</i> Sibth. & Sm.		<i>Crypsis aculeata</i> (L.) Aiton
<i>Oenanthe silaifolia</i> M.Bieb.			<i>Cynosurus echinatus</i> L.
<i>Scandix pecten-veneris</i> L.	CISTACEAE	JUNCACEAE	<i>Dactylis glomerata</i> L.
<i>Torilis arvensis</i> (Huds.) Link subsp. <i>neglecta</i> (Spreng.) Thell.	<i>Cistus creticus</i> L.	<i>Juncus acutus</i> L.	<i>Elymus elongatus</i> (Host)
<i>Torilis nodosa</i> (L.) Gaertn.	<i>Fumana thymifolia</i> (L.) Spach	<i>Juncus gerardii</i> Loisel.	<i>Runemark</i>
		<i>Juncus hybridus</i> Brot.	<i>Hordeum bulbosum</i> L.
		<i>Juncus maritimus</i> Lam.	<i>Hordeum murinum</i> L. subsp. <i>leporinum</i> (Link) Arcang.
ARACEAE	CONVOLVULACEAE	LAMIACEAE	<i>Imperata cylindrica</i> (L.)
<i>Lemna minor</i> L.	<i>Calystegia sepium</i> (L.) R.Br.	<i>Ballota acetabulosa</i> (L.) Benth.	<i>Koeleria pyramidata</i> (Lam.)
	<i>Convolvulus arvensis</i> L.	<i>Lamium amplexicaule</i> L.	<i>Lagurus ovatus</i> L.
AMARYLLIDACEAE	<i>Convolvulus elegantissimum</i> Mill.	<i>Marrubium peregrinum</i> L.	<i>Lolium perenne</i> L.
<i>Allium sphaerocephalon</i> L.		<i>Micromeria graeca</i> (L.) Benth. ex Reicb.	
		<i>Origanum vulgare</i> L. subsp. <i>hirtum</i> (Link) Ietsw.	<i>Lolium rigidum</i> Gaudich.
ASPARAGACEAE	<i>Umbilicus horizontali</i> (Salisb.) Dandy	<i>Salvia viridis</i> L.	<i>Oryzopsis milacea</i> (L.)
<i>Ornithogalum pyrenaicum</i> L.		<i>Stachys cretica</i> L. subsp. <i>lesbiaca</i> Rech.f.	<i>Phragmites australis</i> (Cav.)
		<i>Teucrium chamaedrys</i> L.	<i>Trin. ex Steud.</i>
ASPLENIACEAE		<i>Teucrium polium</i> L.	<i>Poa annua</i> L.
<i>Asplenium obovatum</i> Viv.	<i>Bolboschoenus maritimus</i> (L.) Palla	<i>Teucrium scordium</i> L. subsp. <i>scordoides</i> (Schreb.) Arcang.	<i>Poa bulbosa</i> L.
	<i>Carex divisa</i> Huds.	<i>Thymbra capitata</i> (L.) Cav.	<i>Poa trivialis</i> L.
ASTERACEAE	<i>Carex divulsa</i> Stokes	<i>Vitex agnus-castus</i> L.	<i>Polypogon maritimus</i> Willd.
<i>Achillea maritima</i> (L.) Ehrend. & Y.P.Guo	<i>Cyperus capitatus</i> Vand.		<i>Polypogon monspeliensis</i> (L.) Desf.
<i>Anthemis auriculata</i> Boiss.	<i>Isolepis cernua</i> (Vahl) Roem. & Schult.		<i>Puccinellia distans</i> (Jacq.) Parl.
<i>Anthemis cotula</i> L.	<i>Scirpoides holoschoenus</i> (L.) Soják		<i>Rostraria cristata</i> (L.)
<i>Anthemis tomentosa</i> L.			<i>Vulpia ciliata</i> Dumort.
<i>Bellis perennis</i> L.	DENNSTAEDTIACEAE		POLYGONACEAE
<i>Carduus nutans</i> L.	<i>Pteridium aquilinum</i> (L.) Kuhn		<i>Polygonum patulum</i>
<i>Centaurea spinosa</i> L.			<i>Rumex acetosella</i> L.
<i>Conyza bonariensis</i> (L.) Cronquist	EQUISETACEAE		<i>Rumex pulcher</i> L.
<i>Cota tinctoria</i> (L.) J.Gay ex Guss.	<i>Equisetum ramosissimum</i> Desf.		<i>Rumex tuberosus</i> L.
<i>Crepis commutata</i> (Spreng.) Greuter			PRIMULACEAE
<i>Crepis zacintha</i> (L.) Babc.	EUPHORBIACEAE		<i>Anagallis arvensis</i> L.
<i>Filago eriocephala</i> Guss.	<i>Euphorbia chamaesyce</i> L.		<i>Anagallis arvensis</i> L. var. <i>caerulea</i> (L.) Gouan
<i>Filago pygmaea</i> L.	<i>Euphorbia helioscopia</i> L.		PTERIDACEAE
<i>Filago pyramidata</i> L.	<i>Euphorbia paralias</i> L.		<i>Anogramma leptophylla</i> (L.)
<i>Hedypnois rhagadioloides</i> (L.) F.W.Schmidt subsp. <i>cretica</i> (L.) Hayek			RANUNCULACEAE
<i>Inula viscosa</i> (L.) Aiton	FABACEAE		<i>Anemone coronaria</i> L.
<i>Picromonacarna</i> (L.) Cass.	<i>Lathyrus annuus</i> L.		<i>Ranunculus ficaria</i> L.
<i>Scolymus hispanicus</i> L.	<i>Medicago constricta</i> Dur.		<i>Ranunculus muricatus</i> L.
<i>Senecio vernalis</i> Waldst. & Kit.	<i>Medicago coronata</i> (L.) Bart.		<i>Ranunculus neapolitanus</i>
<i>Sonchus oleraceus</i> L.	<i>Medicago falcata</i> L.		<i>Ranunculus peltatus</i>
<i>Tragopogon porrifolius</i> L. subsp. <i>longirostris</i> (Sch.Bip.) Greuter	<i>Medicago marina</i> L.		ROSACEAE
	<i>Medicago orbicularis</i> (L.) Bartal.		<i>Potentilla reptans</i> L.
BORAGINACEAE	<i>Medicago polymorpha</i> L.		<i>Rubus sanctus</i> Schreb.
<i>Anchusa hybrida</i> Ten.	<i>Medicago rigidula</i> (L.) All.		<i>Sarcopoterium spinosum</i> (L.) Spach
<i>Echium italicum</i> L.	<i>Melilotus albus</i> Desr.		RUBIACEAE
<i>Heliotropium europaeum</i> L.	<i>Ononis serrata</i> Forssk.		<i>Galium debile</i> Dev.
	<i>Ononis viscosa</i> L. subsp. <i>brevifolia</i> (DC.)		<i>Valantia muralis</i> L.
BRASSICACEAE	<i>Trifolium angustifolium</i> L.		SALICACEAE
<i>Alyssum umbellatum</i> Desv.	<i>Trifolium arvense</i> L.		<i>Salix alba</i> L.
	<i>Trifolium campestre</i> Schreb.		SCROPHULARIACEAE
<i>Capsella rubella</i> Reut.	<i>Trifolium fragiferum</i> L. var. <i>pulchellum</i> Lange		<i>Verbascum sinuatum</i> L.
<i>Clypeola jonthaspi</i> L.	<i>Trifolium purpureum</i> Lois.		TAMARICACEAE
<i>Diplotaxis viminea</i> (L.) DC.	<i>Trifolium scabrum</i> L.		<i>Tamarix smyrnensis</i> Bunge
<i>Draba verna</i> L.	<i>Vicia hirsuta</i> (L.) Gray		TYPHACEAE
<i>Hirschfeldia incana</i> (L.) Lagr.-Foss.	<i>Vicia lathyroides</i> L.		<i>Typha angustifolia</i> L.
<i>Nasturtium officinale</i> R.Br.	<i>Vicia villosa</i> Roth subsp. <i>eriocarpa</i> (Hausskn.) P.W.Ball		VERBENACEAE
<i>Raphanus raphanistrum</i> L.			<i>Verbena officinalis</i> L.
	FAGACEAE		VIOLACEAE
CAMPANULACEAE	<i>Quercus coccifera</i> L.		<i>Viola kitaibeliana</i> Roem. & Schult.
<i>Legousia pentagonia</i> (L.) Thell.			XANTHORRHOEACEAE
CAPRIFOLIACEAE	GENTIANACEAE		<i>Asphodelus aestivus</i> Brot.
<i>Valerianella discoidea</i> (L.) Loisel.	<i>Centaurium maritimum</i> (L.) Fritsch		
CARYOPHYLLACEAE	<i>Centaurium tenuifolium</i> (Hoffmanns. & Link) Fritsch		
<i>Arenaria serpyllifolia</i> L. subsp. <i>leptoclados</i> (Rchb.) Nyman	GERANIACEAE		
<i>Cerastium brachypetalum</i> Pers. subsp. <i>roeseri</i> (Boiss. & Heldr.) Nyman	<i>Erodium acaule</i> (L.) Becherer & Thell.		
<i>Polycarpon tetraphyllum</i> (L.) L.	<i>Erodium cicutarium</i> (L.) Hér.		
<i>Silene colorata</i> Poir.	<i>Geranium molle</i> L.		
<i>Silene gallica</i> L.			
<i>Spergula pentandra</i> L.	HYPERICAEAE		
	<i>Hypericum perforatum</i> L.		
	IRIDACEAE		
	<i>Crocus pulchellus</i> Herb.		

TABLE 3

Phytoplankton species list in the water samples from Gökçeada Salt Lake. New record algal flora for the Turkey were marked with *.

MARINE SPECIES			
CYANOBACTERIA	<i>Lyrella lyroides</i> (Hendey) D.G. Mann in Round	CHLOROPHYTA	<i>Noctiluca scintillans</i> (Macartney) Kofoid
<i>Phormidium limosum</i> (Dillwyn) P.C. Silva	<i>Navicula cryptocephala</i> Kützing	<i>Halosphaera viridis</i> F. Schmitz	<i>Polykrikos kofoidii</i> Chatton
BACILLARIOPHYTA	<i>Navicula salinarum</i> Grunow	<i>Pyramimonas adriaticus</i> J. Schiller	<i>Prorocentrum compressum</i> (Bailey) Abé ex
<i>Achnanthes longipes</i> C. Agardh	<i>Nitzschia longissima</i> (Brébisson) Ralfs	CRYPTOPHYTA	<i>Prorocentrum cordatum</i> (Ostenfeld) Dodge
<i>Actinocyclus normanii</i> (Gregory) Hustedt	<i>Nitzschia sigma</i> (Kützing) W. Smith	<i>Rhodomonas marina</i> (P.A. Dangeard) Lemmermann	<i>Protoperidinium mediterraneum</i> (Kofoid) Balech
<i>Amphora ocellata</i> Donkin	<i>Podosira hormoides</i> (Mont.) Kützing	DINOFLAGELLATA	<i>Protoperidinium oceanicum</i> (VanHöffen) Balech
<i>Bacteriastrum hyalinum</i> Lauder	<i>Proboscia alata</i> (Brightwell) Sündstrom	<i>Amphidinium sphenooides</i> Wülf	<i>Protoperidinium pallidum</i> (Ostenfeld) Balech
<i>Cerataulina pelagica</i> (Cleve) Hendey	<i>Pseudo-nitzschia delicatissima</i> (Cleve) Heiden	<i>Ceratium hirundinella</i> (O.F. Müller) Dujardin	<i>Protoperidinium pellucidum</i> Bergh exLoeblich
<i>Coscinodiscus perforatus</i> Ehrenberg	<i>Pseudosolenia calcar-avis</i> (Schultze) Sundström	<i>Cochlodinium archimedes</i> (Pouchet) Lemmermann	<i>Protoperidinium steinii</i> (Jorgensen) Balech
<i>Diploneis chersonensis</i> (Grunov) Cleve	<i>Thalassionema nitzschioides</i> (Grunow)	<i>Gonyaulax scrippsae</i> Kofoid	<i>Torodinium teredo</i> (Pouchet) Kofoid & Swezy
<i>Gyrosigma acuminatum</i> (Kützing) Rabenhorst	<i>Thalassiothrix mediterranea</i> Pavillard	<i>Gyrodinium pingue</i> (Schütt) Kofoid & Swezy	<i>Tripos furca</i> (Ehrenberg) F. Gómez
<i>Hannea arcus</i> (Ehrenberg) R.M. Patrick	OCHROPHYTA	<i>Gyrodinium spirale</i> (Bergh) Kofoid & Swezy	<i>Tripos macroceros</i> (Ehrenberg) F. Gómez
<i>Hemiaulus hauckii</i> Grunow ex Van Heurck	<i>Heterosigma akashiwo</i> (Y. Hada)	<i>Karenia brevis</i> (C.C. Davis) Gert Hansen & Ø. Moestrup	
<i>Leptocylindrus minimus</i> Gran	BIGYRA	<i>Katodinium fungiforme</i> (Anissimova) A.R. Loeblich III	
	<i>Bicosoeca mediterranea</i> Pavillard	<i>Neoceratium fusus</i> (Ehrenberg) F. Gomez	
LAKE SPECIES			
CYANOBACTERIA	<i>Gyrosigma attenuatum</i> (Kützing) Rabenhorst	CHLOROPHYTA	<i>Aegagropila linnaei</i> Kützing
<i>Leptolyngbya fragilis</i> (Gomont)	<i>Gyrosigma acuminatum</i> (Kützing) Rabenhorst	<i>Ankistrodesmus spiralis</i> (W.B. Turner)	<i>Chlamydomonas reinhardtii</i>
BACILLARIOPHYTA	<i>Gyrosigma distortum</i> (W. Smith) Griffith & Henfrey	<i>Leudiger-Fortmoresi*</i>	<i>P.A. Dangeard</i>
<i>Amphora ovalis</i> (Kützing)	<i>Licmophora ehrenbergii</i> (Kützing) Grunow	<i>Tryblionna acuta</i> (Cleve) D.G. Mann in Round	<i>Cladophora glomerata</i> (Linnaeus) Kützing
<i>Caloneis limosa</i> (Kützing) R.M. Patrick in Patrick	<i>Melosira varians</i> C. Agardh	<i>Tryblionna navicularis</i> (Brébisson) Ralfs in Pritchard	<i>Closterium ehrenbergii</i>
<i>Cocconeis pediculus</i> Ehrenberg	<i>Navicula cincta</i> (Ehrenberg) Ralfs in Pritchard	<i>Ulnaria danica</i> (Kützing) Compère & Bukhtiyarova	<i>Meneghini ex Ralfs</i>
<i>Coronia decora</i> (Brébisson) Ruck & Guiry	<i>Navicula cryptocephala</i> Kützing	<i>Ulnaria ulna</i> (Nitzsch) Compère in Jahn et al.	<i>Closterium moniliferum</i> Ehrenberg ex Ralfs
<i>Cyclotella meneghiniana</i> Kützing	<i>Navicula salinarum</i> Grunow	CHAROPHYTA	<i>Dunaliella tertiolecta</i> Butcher
<i>Cymatopleura elliptica</i> (Brébisson) W. Smith	<i>Nitzschia acicularioides</i> Hustedt	<i>Spirogyra crassa</i> (Kützing) Kützing	<i>Oocystis elliptica</i> West
<i>Encyonema minutum</i> (Hilse) D.G. Mann	<i>Nitzschia communis</i> Rabenhorst	CRYPTOPHYTA	DINOFLAGELLATA
<i>Entomoneis alata</i> (Ehrenberg) Ehrenberg	<i>Nitzschia dissipata</i> (Kützing) Rabenhorst	<i>Cryptomonas ovata</i> Ehrenberg	<i>Karenia brevis</i> (C.C. Davis)
<i>Fragilaria capucina</i> Desmazières	<i>Nitzschia nana</i> Grunow in Van Heurck	<i>Plagioselmis nannoplantica</i> (H. Skuja) G. Novarino	<i>Gert Hansen</i>
<i>Fragilaria cotonensis</i> Kitton	<i>Nitzschia ovalis</i> H.J. Arnott in Cleve & Grunow	<i>Rhodomonas marina</i> (P.A. Dangeard) Lemmermann	<i>Prorocentrum cordatum</i> (Ostenfeld) Dodge
<i>Gomphonema minutum</i> (C. Agardh) C. Agardh	<i>Nitzschia sigmaoidea</i> (Nitzsch) W. Smith	<i>Teleaulax acuta</i> (Butcher) D.R.A. Hill	HAPTOPHYTA
<i>Gomphonema olivaceum</i> (Hornemann) Brébisson			<i>Phaeocystis globosa</i> Scherffel
			OCHROPHYTA
			<i>Heterosigma akashiwo</i> (Y. Hada)

Terrestrial Plant Samples. The terrestrial vascular plants around the Salt Lake were collected at spring vegetation periods. The samples were collected, photographed and identified. The speci-

mens were kept in the Çanakkale Onsekiz Mart University, Çanakkale Botanic Garden Herbarium (CBB). In addition, herbarium samples previously collected from the site were examined in CBB and

Herbarium of Ege University Botanic Garden (EGE).

Birds, Amphibians, Reptilians and Mammals Observations. The birds in and around the lake were observed in detail under the transect work. Three binoculars (8x40, 8,20 wide angle, Meade telescope (EXT 70), Garmin GPS Etrex navigation device (Vista-HCX), and a camera (Canon 60D, Canon 7D Mark II body, Canon 300mm f2.8L IS USM super telephoto lens) were used during the observations. In the study area, species of fixed birds primarily were counted and photographed.

Amphibian, reptile and mammal specimens were captured during about 20 days in 10 excursions by two people on various dates. They were caught by net, hand or using fish traps.

RESULTS

In this study, a total of 195 taxa of terrestrial vascular flora and 134 species of aquatic flora (97 species of phytoplankton, 37 species of benthic algae); 23 macrobenthos taxa from lotic and lentic biotopes; and 131 species from marine biotope were identified. Furthermore, 4 fish, 14 reptilians, 3 amphibian and 71 bird species were observed in the study area. Although, one species of phytoplankton was found as a new record for the Turkish aquatic flora, a total of 71 marine invertebrate species were reported for the first time in the marine fauna of Gökçeada. The species lists, which were observed at the study area, are detailed in Tables 2-6.

Algae. A total of 97 phytoplankton taxa belonging to Cyanobacteria (2), Bacillariophyta (56), Bigyra (1), Chlorophyta (11), Cryptophyta (4), Dinoflagellata (21), Haptophyta (1) and Ochrophyta (1) were identified in the water samples collected from the lentic, lotic and coastal marine stations of Gökçeada Salt Lake. The list of phytoplankton species and their distributions are presented in Table 3 and Figure 2, respectively. Dominant phytoplankton groups consist of pennate diatoms, tecate and atecheate dinoflagellates and flagellated chlorophytes. The most abundant sampling station was TG3 (2.533.980 cell L⁻¹) according to cell counts in the water samples from the lentic, lotic and coastal marine stations of Gökçeada Salt Lake (Figure 2). The lowest abundance was 1335 cell L⁻¹ in the TK1, whereas the most abundant systematic category was the Chlorophyta (1.431.840 cell L⁻¹). Common species among the stations were *Chlamydomonas reinhardtii* and *Cryptomonas ovata*. In the lotic station (TK1), the highest cell abundance was 976.540 cell L⁻¹ in May 2016 (Figure 2). In the coastal marine

stations, the highest abundance was observed in TD7 (33.000 cell L⁻¹) in February 2016. Chlorophytes and diatoms were the most abundant and common groups of coastal marine phytoplankton. A total of 37 taxa were identified from the lotic (TK1) and lentic (TG2, TG3, TG4 and TG5) sampling stations of Gökçeada Salt Lake. The most abundant and common species are *Epithemia sorex* Kützing during the first half of the sampling period and *Gyrosigma acuminatum* (Kützing) Rabenhorst during the second half.

Plants. A total of 195 taxa belonging to terrestrial vascular flora were observed in this study. While the Poaceae were represented by 36 taxa, it was followed by Asteraceae and Fabaceae with 21 taxa, Lamiaceae with 12 taxa, Caryophyllaceae with 9 taxa, Brassicaceae with 8 taxa, Apiaceae and Cyperaceae with 6 taxa, Gentianaceae, Ranunculaceae and Plantaginaceae with 5 taxa, Juncaceae and Polygonaceae with 4 taxa, Boraginaceae, Convolvulaceae, Euphorbiaceae, Rosaceae, Orobanchaceae, Papaveraceae and Iridaceae with 3 taxa, Asparagaceae, Cistaceae, Linaceae, Malvaceae, Oleaceae and Rubiaceae with 2 taxa. The other groups (Araceae, Aspleniaceae, Campanulaceae, Caprifoliaceae, Dennstaedtiaceae, Equisetaceae, Hypericaceae, Papaveraceae, Pteridaceae, Orchidaceae, Violaceae, Salicaceae, Scrophulariaceae, Tamaricaceae, Typhaceae, Verbenaceae, Xanthorrhoeaceae) were represented by only one taxa.

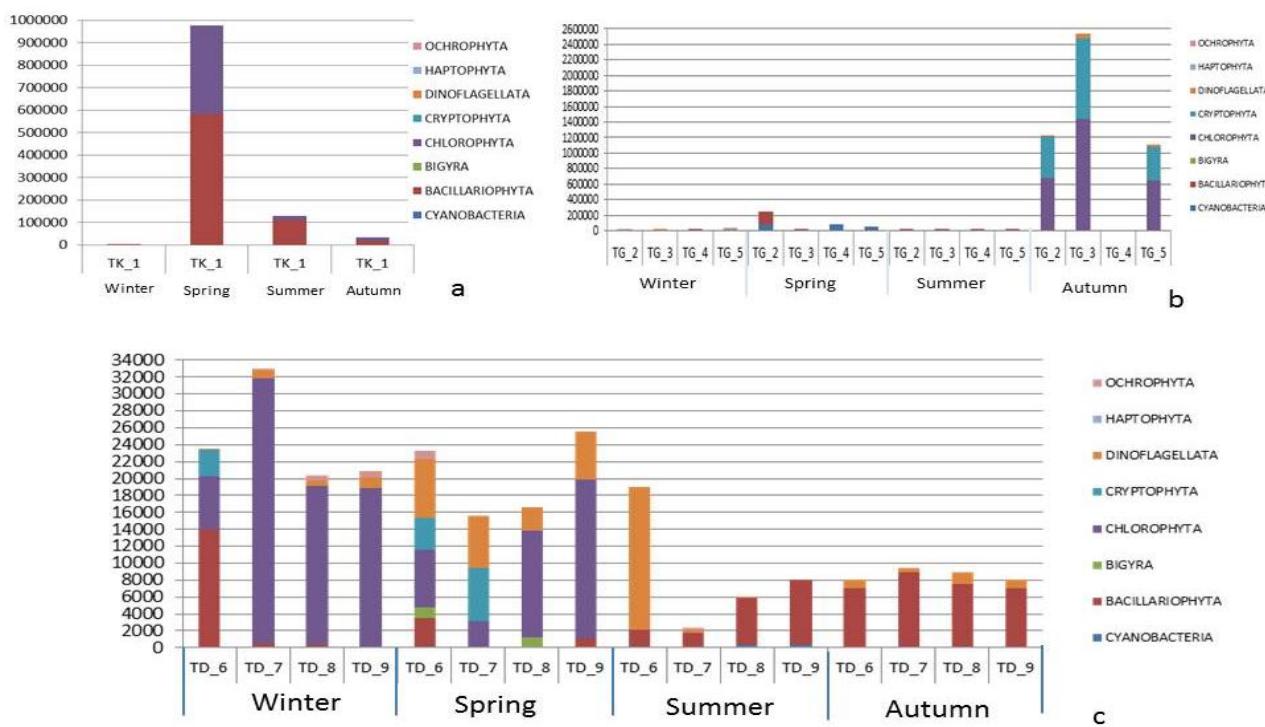
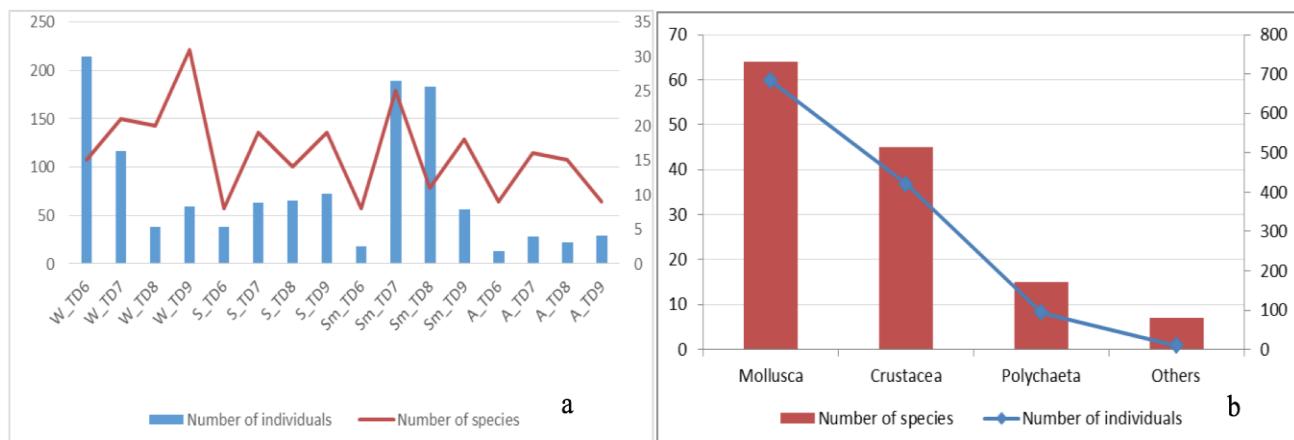

Macroinvertebrates. The taxonomic analysis of the invertebrate samples collected from the sea resulted in 1,205 individuals belonging to 131 species of 8 taxa (Porifera, Anthozoa, Sipuncula, Polychaeta, Crustacea, Mollusca, Bryozoa, Echinodermata) (Table 4). The seasonal distribution of the species at the sampling stations was exhibited in Figure 3a. Mollusks were the most abundant taxon (682 individuals and 64 species), followed by crustaceans (420 individuals and 45 species) and polychaetes (94 individuals and 15 species) (Figure 3b). The most abundant species were the mollusks (*Bitium latreillii*, *B. reticulatum* and *Sepiola rondeletii*), and grouped as “constant”; the mollusk (*Cerithium vulgatum*, *Mangelia callosa*, *Rissoa violacea*, *Chamelea gallina*, *Donacilla cornea*, *Lucinella divaricata*), the crustaceans (*Nototropis massiliensis*, *Eurydice spinigera*, *Cumella (Cumella) pygmaea*, *Clibanarius erythropus*, *Diogenes pugilator*, *Liocarcinus depurator*, *Philocheras trispinosus*). The polychaetes (*Sphaerosyllis* sp., *Lumbrinerides amoureuxi*) were grouped as “common” in the results of the frequency index. A total of 23 taxa belonging to benthic macroinvertebrates were determined in Gökçeada Salt Lake (lotic and lentic biotopes) (Table 4).

TABLE 4
The list of invertebrate species the study area. New record fauna for the Gökçeada island were marked with **


MARINE SPECIES			
Phylum / Species	Phylum / Species	Phylum / Species	Phylum / Species
Porifera	<i>Mangelia</i> sp. **	Arthropoda	<i>Nototropis</i> <i>guttatus</i>
<i>Halichondria panicea</i>	<i>Mangelia striolata</i> **	<i>Ampelisca brevicornis</i> **	<i>Nototropis</i> <i>massiliensis</i>
Anthozoa	<i>Manzonia crassa</i> **	<i>Ampelisca sarsi</i> **	<i>Pachygrapsus</i> <i>mar-</i> <i>moratus</i>
<i>Calliactis parasitica</i> **	<i>Modiolula phaseolina</i>	<i>Ampelisca</i> sp.	<i>Paragnathia</i> <i>formica</i>
Mollusca	<i>Monophorus</i> sp	<i>Anoplodactylus petiolatus</i> **	<i>Paranthura</i> <i>costana</i> **
<i>Alvania cimex</i>	<i>Muricopsis cristata</i>	<i>Aora gracilis</i> **	<i>Periocolodes</i> <i>longimanus</i> **
<i>Bela nuperrima</i> **	<i>Musculus costulatus</i>	<i>Bathyporeia guilliamsoniana</i>	<i>Philocheras</i> <i>trispinosus</i>
<i>Bela zonata</i> **	<i>Mytilus galloprovincialis</i>	<i>Bathyporeia phaiophthalma</i>	<i>Porcellio</i> <i>scaber</i>
<i>Bittium lacteum</i> **	<i>Naticarius stercusmuscarum</i> **	<i>Chrinomid</i> sp	<i>Sphaeroma</i> <i>serratum</i> **
<i>Bittium latreillii</i>	<i>Neverita josephinia</i>	<i>Clibanarius erythropus</i>	<i>Squilla</i> <i>mantis</i>
<i>Bittium reticulatum</i>	<i>Ocinebrina aciculata</i> **	<i>Cumella pygmaea</i> **	<i>Stenosoma</i> <i>capito</i> **
<i>Bolinus brandaris</i>	<i>Peronidia albicans</i> **	<i>Deflexilodes griseus</i>	<i>Urothoe</i> <i>pulchella</i> **
<i>Caecum</i> sp. **	<i>Pisania striata</i>	<i>Dexamine spinosa</i>	<i>Thracia</i> <i>phaseolina</i> **
<i>Caecum trachea</i> **	<i>Pitar rufus</i>	<i>Diogenes pugilator</i>	Bryozoa
<i>Cerithium vulgatum</i>	<i>Raphitoma linearis</i> **	<i>Dynamene</i> sp.	<i>Cryptosula</i> <i>pallasiana</i> **
<i>Chamelea gallina</i>	<i>Rissoa</i> sp.	<i>Ericthonius brasiliensis</i>	<i>Shcizomavella</i> sp.
<i>Clanculus cruciatus</i>	<i>Rissoa variabilis</i>	<i>Eurydice spinigera</i>	Bryozoa (sp)
<i>Conus ventricosus</i>	<i>Rissoa violacea</i> **	<i>Gammarella fucicola</i> **	Polychaeta
<i>Cuspidaria cuspidata</i>	<i>Sepiola rondeletii</i>	<i>Gammarus subtypicus</i> **	<i>Sphaerosyllis</i> sp.
<i>Donacilla cornea</i>	<i>Solen marginatus</i>	<i>Gastrosaccus sanctus</i> **	<i>Arabella</i> <i>iricolor</i> **
<i>Donax semistriatus</i> **	<i>Spisula subtruncata</i>	<i>Harpactoid</i> sp	<i>Phyllodocidae</i> (sp).
<i>Donax trunculus</i>	<i>Thracia phaseolina</i> **	<i>Hyale schmidtii</i> **	<i>Nephtys</i> <i>cirrosa</i> **
<i>Donax variegatus</i>	<i>Tricolia pullus</i>	<i>Gammarus subtypicus</i> **	<i>Micronephthys</i> <i>stam-</i> <i>meri</i> **
<i>Enginella leucozona</i> **	<i>Tricolia speciosa</i> **	<i>Homalopoma sanguineum</i> **	<i>Glycera</i> sp.
<i>Epitonium</i> sp.	<i>Tritia incrassata</i> **	<i>Hyale</i> sp.	<i>Lumbrinerides</i> <i>amoureauxi</i> **
<i>Eulima glabra</i>	<i>Tritia mutabilis</i> **	<i>Idotea balthica</i>	<i>Schistomerengos</i> <i>neglec-</i> <i>ta</i> **
<i>Gibbula</i> sp	<i>Tritia neritea</i> **	<i>Leucothoe spinicarpa</i> **	<i>Protodorvillea</i> <i>kefer-</i> <i>steini</i>
<i>Haliotis tuberculata</i>	<i>Tritia neritea</i> **	<i>Liocarcinus depurator</i>	<i>Saccocirrus</i> sp.
<i>Hiatella arctica</i>	<i>Turbanilla</i> sp	<i>Lysianassa costae</i> **	<i>Spio</i> <i>filicornis</i> **
<i>Hiatella rugosa</i>	<i>Turritella communis</i>	<i>Macropodia rostrata</i>	<i>Platynereis</i> <i>dumerili</i>
<i>Loripes orbiculatus</i> **	<i>Vexillum ebanus</i>	<i>Microdeutopus algicola</i>	<i>Fabricia</i> sp.
<i>Lucinella divaricata</i>	<i>Vexillum granum</i> **	<i>Microdeutopus</i> sp	<i>Pisone</i> sp.
<i>Mactra stultorum</i> **	Echinodermata	<i>Microdeutopus versicoloratus</i> **	<i>Magelona</i> <i>mirabilis</i> **
<i>Mangelia callosa</i> **	<i>Echinocardium cordatum</i>	<i>Monoculodes</i> sp	Spiculoid
<i>Mangelia costulata</i> **		<i>Mysid</i> sp	<i>Aspidosiphon</i> <i>muelleri</i>

LAKE SPECIES

Oligochaeta	Amphipoda	Insecta	
<i>Tubifex</i> sp.	<i>Gammarus</i> sp.	<i>Chironomus plumosus</i>	<i>Microtendipes</i> <i>chloris</i>
<i>Stylaria lacustris</i>	<i>Gammarus komareki</i>	<i>Stictochironomus</i> sp.	<i>Crocothemis</i> <i>erythraea</i>
<i>Nais bretschieri</i>	Isopoda	<i>Cricotopus bicinctus</i>	<i>Ischnura elegans</i>
<i>Limnodrilus hoffmeisteri</i>	<i>Idotea baltica</i>	<i>Procladius</i> (<i>Holotanypus</i>) sp.	<i>Coenagriidae</i>
<i>Dero digitata</i>	<i>Asellus aquaticus</i>	<i>Chironomus riparius</i>	<i>Caenis</i> sp.

FIGURE 2
Phytoplankton abundance and variation in the water samples from the study area.
a) lotic, b) lentic, c) marine

FIGURE 3
Marine macrozoobenthos a) Seasonal distribution of the individual and species numbers at the sampling stations b) The number of individual and species numbers of the marine macrozoobenthos

According to the results, we found 2 taxa in the summer sampling, 4 taxa in the winter sampling, 10 taxa in the spring sampling, 16 taxa in the autumn sampling (Table 5). We found cross-larval chironomids only in the spring sampling. At the sampling stations, station TK1 was the richest location with 15 taxa during the sampling period, followed by station TG2 with 5 taxa and stations TG4 and TG5 with 3 taxa. According to the individual site results, station TK1 was also found to be the richest ($155 \text{ individuals m}^{-2}$) followed by the others with $22 \text{ individuals m}^{-2}$. The specimens belonging to Oligo-

chaeta were found at all sampling stations in all seasons except summer. However, the group Amphipoda was found only at three stations (TG2, TG4 and TG5) and the group Isopoda was found only at stations TK1 and TG4. The larval chironomids were the most dominant group belonging to Insecta. This group was followed by Odonata and Ephemeroptera. The specimens belonging to Gastropoda were found only at station TK1 (Table 5). Although the shells of Ostracoda were recognized, they were not identified.

TABLE 5
The seasonal distributions of benthic macroinvertebrates from lotic and lentic biotopes (individuals/m²)
*diagnostik characters are damaged **juvenile forms

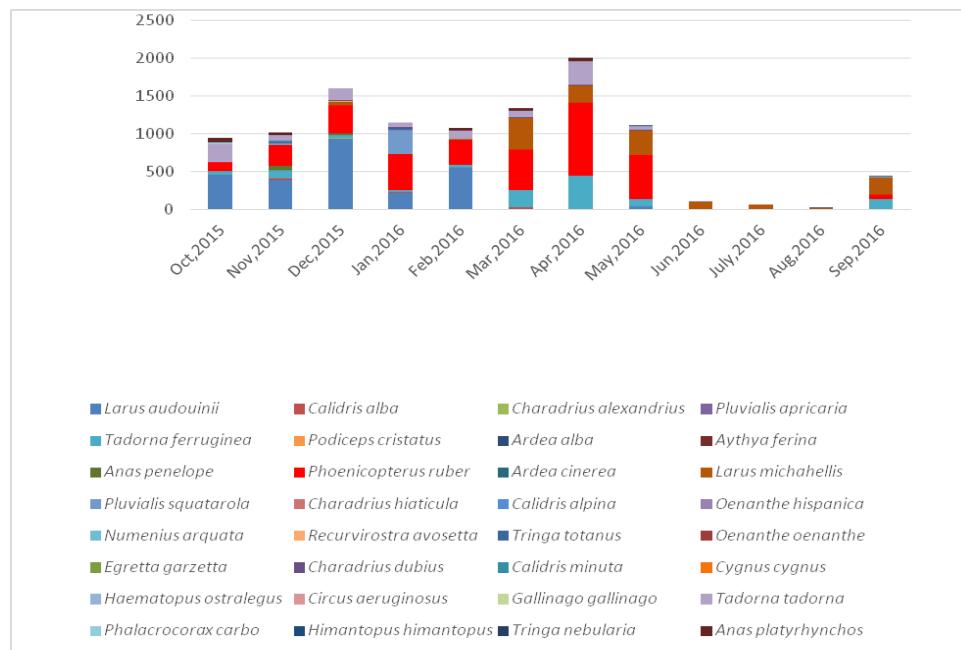
Taxa↓	Station →	SUMMER					Taxa ↓	AUTUMN				
		TK1	TG2	TG3	TG4	TG5		Station →	TK1	TG2	TG3	TG5
INSECTA	<i>Chironomus plumosus</i>	-	44	-	-	-	OLIGOCHAETA	<i>Tubifex</i> sp.	288**	-	-	-
	<i>Stictochironomus</i> sp.	66**	-	-	-	-		<i>Limnodrilus hoffmeisteri</i>	200	-	-	-
	Total	66	44	0	0	0		<i>Dero digitata</i>	88	-	-	-
SPRING							ISOPODA	<i>Asellus aquaticus</i>	2777	-	-	-
Taxa↓	Station →	TK1	TG2	TG3	TG4	TG5		<i>Chironomidae</i>	25**	-	-	-
OLIGOCHAETA		22*	-	-	-	-		<i>Chironomus plumosus</i>	222	-	-	-
	<i>Stylaria lacustris</i>	-	66	-	-	-		<i>Procladius (H.)</i> sp.	155	-	-	-
	<i>Nais bretschneri</i>	-	66	-	-	-		<i>Chironomus riparius</i>	22	-	-	-
AMPHIPODA	<i>Gammarus</i> sp.	-	22*	-	-	222**	INSECTA	<i>Microtendipes chloris</i>	88	-	-	-
	<i>Gammarus komareki</i>	-	-	-	333	-		<i>Crocothemis erythraea</i>	44	-	-	-
	<i>Idothea baltica</i>	-	-	-	22	-		<i>Ischnura elegans</i>	44	-	-	-
ISOPODA	<i>Asellus aquaticus</i>	44	-	-	-	-		<i>Coenagrieniidae</i>	44**	-	-	-
	<i>Chironomus plumosus</i>	-	-	-	-	22		<i>Caenis</i> sp.	44*	-	-	-
	<i>Stictochironomus</i> sp.	444	22	-	-	-		<i>Bithyniidae</i>	177**	-	-	-
INSECTA	<i>Cricotopus bicinctus</i>	-	-	-	-	266		<i>Planorbidae</i>	200**	-	-	-
	Total	510	176	0	355	510		Total	4506	0	0	0
WINTER												
Taxa↓	Station →	TK1	TG2	TG3	TG4	TG5						
OLIGOCHAETA	<i>Tubifex</i> sp.	155*	-	-	-	-						
	<i>Gammarus</i> sp.	-	-	-	-	22*						
	<i>Chironomus plumosus</i>	-	22	-	-	-						
INSECTA	<i>Stictochironomus</i> sp.	-	-	-	22**	-						
	Total	155	22	0	22	22						

Fish. Fish samples collected from the sea (TD6 & TD8) resulted in 28 individuals belonging to four species (Table 6). *Arnoglossus laterna* had the highest individual number. Additionally, *Trachinus draco* was grouped as “common” in the results of the frequency index.

Amphibian and Reptiles. Three amphibian species were found at the Salt Lake in Gökçeada during the sampling period (Table 6). The Marsh Frog (*Pelophylax ridibundus*) has been observed in all rivers and streams around the lake at the beginning of spring and at the beginning of winter. The night frog (*Bufo bufo variabilis*), a terrestrial species, was found in the areas close to the settlements and was encountered throughout nearly the entire sampling period except winter. Tree frog (*Hyla orientalis*) was more frequently observed in vegetative wetlands, during spring and summer. Twelve reptile species (2 turtles, 3 lizards, 7 snakes) were found on the Salt Lake (Table 6). No mammals

were observed.

Birds. As a result of the 12-month bird watching study, 71 bird species were identified on and around the Salt Lake (Table 6). Flamingo could not be observed in August, July and September 2016 because the Salt Lake was almost completely dry (Figure 4). Windsurfing was observed in the lake during the bird monitoring studies on April 24, 2016. On the same date, gull eggs and pups were also recorded around the lake.


DISCUSSION

Inland, marine and terrestrial ecosystems are under global pressure from human impacts in various forms, i.e. pollution, habitat degradation, urbanization, etc. A better understanding of the biodiversity is urgently needed to mitigate the human impacts through effective conservation and

TABLE 6

The list of vertebrate species observed Gokceada Salty Lake Wetlands and around biotopes and their IUCN Status (NE: Not Evaluated, DD: Data Deficient, LC: Last Concern, NT: Near Threatened, VU: Vulnerable, EN: Endangered)

Family / Species	IUCN	Family / Species	IUCN	Family / Species	IUCN	Family / Species	IUCN
(PISCES)		<i>Platycephalus najadum</i> (Eichwald, 1831)	LC	(AVES)		Muscicapidae	
Bothidae		<i>Malpolon insignatus</i> (Geoffroy 1809)	LC	Podicipedidae		<i>Ficedula parva</i> (Bechstein, 1792)	LC
<i>Arnoglossus laterna</i> (Walbaum, 1792)	LC	<i>Zamenis situla</i> (Linnaeus, 1758)	LC	<i>Podiceps cristatus</i> (Linnaeus, 1758)	LC	<i>Ficedula semitorquata</i> (Homeyer, 1885)	LC
Gobiidae		<i>Natrix natrix</i> Linnaeus, 1758	LC	Phalacrocoracidae		<i>Erithacus rubecula</i> (Linnaeus, 1758)	LC
<i>Deltentosteus quadrifaculatus</i> (Valenciennes, 1837)	NE	Scolopacidae		<i>Phalacrocorax aristotelis</i> (Linnaeus, 1761)	LC	<i>Luscinia megarhynchos</i> (Brehm, 1831)	LC
Trachinidae		<i>Calidris alba</i> (Pallas, 1764)	LC	Ardeidae		<i>Oenanthe oenanthe</i> (Linnaeus, 1758)	LC
<i>Trachinus draco</i> Linnaeus, 1758	LC	<i>Calidris minuta</i> (Leisler, 1812)	LC	<i>Egretta garzetta</i> (Linnaeus, 1766)	LC	<i>Oenanthe hispanica</i> (Linnaeus, 1758)	LC
Rajidae		<i>Calidris alpina</i> (Linnaeus, 1758)	LC	<i>Ardea alba</i> Linnaeus, 1758	LC	Turdidae	
<i>Raja radula</i> Delaroche, 189	EN	<i>Gallinago gallinago</i> (Linnaeus, 1758)	LC	<i>Ardea cinerea</i> Linnaeus, 1758	LC	<i>Turdus merula</i> Linnaeus, 1758	LC
(AMPHIBIA)		<i>Numenius arquata</i> (Linnaeus, 1758)	NT	Phoenicopteridae		<i>Turdus pilaris</i> Linnaeus, 1758	LC
Bufonidae	DD	<i>Tringa totanus</i> (Linnaeus, 1758)	LC	<i>Phoenicopterus ruber</i> Linnaeus, 1758	LC	Paridae	
<i>Bufoates variabilis</i> (Pallas, 1769)		<i>Tringa nebularia</i> (Gunnerus, 1767)	LC	Anatidae		<i>Cyanistes caeruleus</i> (Linnaeus, 1758)	LC
Hylidae		Laridae		<i>Cygnus cygnus</i> (Linnaeus, 1758)	LC	<i>Parus major</i> Linnaeus, 1758	LC
<i>Hyla orientalis</i> Bedriaga, 1890	LC	<i>Larus audouinii</i> Payraudeau, 1826	LC	<i>Tadorna ferruginea</i> (Pallas, 1764)	LC	Laniidae	
Ranidae		<i>Larus michahellis</i> J.F. Naumann, 1840	LC	<i>Tadorna tadorna</i> (Linnaeus, 1758)	LC	<i>Lanius collurio</i> Linnaeus, 1758	LC
<i>Pelophylax ridibundus</i> (Pallas, 1771)	LC	Columbidae		<i>Anas penelope</i> Linnaeus, 1758	LC	Corvidae	
(REPTILIA)		<i>Streptopelia turtur</i> (Linnaeus, 1758)	VU	<i>Anas platyrhynchos</i> Linnaeus, 1758	LC	<i>Garrulus glandarius</i> (Linnaeus, 1758)	LC
Geoemydidae		Meropidae		<i>Aythya ferina</i> (Linnaeus, 1758)	VU	<i>Corvus monedula</i> Linnaeus, 1758	LC
<i>Mauremys rivulata</i> (Valenciennes, 1833)	-	<i>Merops apiaster</i> Linnaeus, 1758	LC	Accipitridae		<i>Corvus cornix</i> (Linnaeus, 1758)	LC
Testudinidae		Picidae		<i>Circus aeruginosus</i> (Linnaeus, 1758)	LC	<i>Corvus corax</i> Linnaeus, 1758	LC
<i>Testudo graeca</i> Linnaeus, 1758	VU	<i>Dendrocopos syriacus</i> (Ehrenberg, 1833)	LC	Haematopodidae		Sturnidae	
Lacertidae		Sylviidae		<i>Haematopus ostralegus</i> Linnaeus, 1758	NT	<i>Sturnus vulgaris</i> Linnaeus, 1758	LC
<i>Ophisops elegans</i> Méntrries, 1832	-	<i>Acrocephalus scirpaceus</i> (Herman, 1804)	LC	Recurvirostridae		Passeridae	
Gekkonidae		<i>Sylvia cantillans</i> (Pallas, 1764)	LC	<i>Himantopus himantopus</i> (Linnaeus, 1758)	LC	<i>Passer domesticus</i> (Linnaeus, 1758)	LC
<i>Hemidactylus turcicus</i> (Linnaeus, 1758)	LC	<i>Sylvia melanocephala</i> (Gmelin, 1789)	LC	<i>Recurvirostra avosetta</i> Linnaeus, 1758	LC	Fringillidae	
Anguidae		<i>Sylvia curruca</i> (Linnaeus, 1758)	LC	Charadriidae		<i>Fringilla coelebs</i> Linnaeus, 1758	LC
<i>Pseudopus apodus</i> (Pallas, 1775)	LC	<i>Sylvia communis</i> Latham, 1787	LC	<i>Charadrius dubius</i> Scopoli 1786	LC	<i>Chloris chloris</i> (Linnaeus, 1758)	LC
Typhlopidae		<i>Sylvia atricapilla</i> (Linnaeus, 1758)	LC	<i>Charadrius hiaticula</i> Linnaeus, 1758	LC	<i>Carduelis carduelis</i> (Linnaeus, 1758)	LC
<i>Xerophylops vermicularis</i> (Merrem, 1820)	-	<i>Phylloscopus collybita</i> (Vieillot, 1817)	LC	<i>Charadrius alexandrinus</i> Linnaeus, 1758	LC		
Boidae		Emberizidae		<i>Pluvialis apricaria</i> Linnaeus, 1758	LC		
<i>Eryx jaculus</i> (Linnaeus, 1758)	LC	<i>Emberiza cirlus</i> Linnaeus, 1766	LC	<i>Pluvialis squatarola</i> (Linnaeus, 1758)	LC		
Colubridae		<i>Emberiza hortulana</i> Linnaeus, 1758	LC	Troglodytidae			
<i>Dolichophis caspius</i> (Gmelin, 1789)	-	<i>Emberiza schoeniclus</i> (Linnaeus, 1758)	LC	<i>Troglodytes troglodytes</i> (Linnaeus, 1758)	LC		
		<i>Emberiza calandra</i>	LC				

FIGURE 4
The abundance of the aquatic birds observed monthly in the study area

management actions. The wetlands are the most significant ecosystems on Earth in respect to their natural function and economic benefits. Despite their natural and economic importance, they have faced detrimental human impacts throughout the last century in Turkey [46]. The Gökçeada Salt Lake Wetland encounters multiple serious problems such as increased human interaction, especially during summer, from surfing activities that result in physical and some environmental impacts. Assessing the state of the area's biodiversity gives us the ability to understand the actual situation of the wetlands and the dimension of threats the species are facing. Monitoring of the biodiversity is essential to emphasize the importance of these areas. The main point of this study is to describe the present state of the biodiversity of Gökçeada Salt Lake Wetlands.

In this study, while a total of 195 terrestrial vascular plant taxa were identified from Gökçeada Salt Lake Wetland and its surroundings, 97 taxa were identified in the phytoplankton of lentic (TG2, TG3, TG4 and TG5), lotic (TK1) and coastal marine stations of Gökçeada Salt Lake. This aquatic flora belongs to Cyanobacteria (2), Bacillariophyta (56), Bigyra (1), Chlorophyta (11), Cryptophyta (4), Dinoflagellata (21), Haptophyta (1) ve Ochrophyta (1). In the lotic station, the most abundant phytoplankton groups were chlorophytes and diatoms, while chlorophytes and cryptophytes were dominant in lentic stations. Chlorophytes and dinoflagellates in the first half of the year and the diatoms in the second half were the most abundant groups of coastal marine phytoplankton. Benthic algae consisted of 37 taxa from the lotic and lentic sampling stations of Gökçeada Salt Lake. Among those taxa,

the most abundant and common species were the species *E. sorex* in the first half of the sampling period and *G. acuminatum* in the second half. Benthic algal composition of the Salt Lake included the common diatom species, which are resistant to the dramatic salinity variations and eutrophic conditions. This is the first study including a detailed benthic algal flora (37 taxa) of the Gökçeada Salt Lake, although Bassler-Veit et al., [31] observed four epizoic *Coccineis placentula* varieties on the shells of *Loxoconcha elliptica* Brady.

Macroinvertebrates are reported as an important group of organisms, which are found in sediment beneath the water column and act as key components in any aquatic ecosystem [9]. Furthermore, the invertebrate communities of the Salt Lake wetlands are more diverse than expected [47]. In this study of the aquatic invertebrates, a total of 23 macrobenthic species from lotic and lentic biotopes and 131 species from the marine biotope were identified. The station TK1 was found to be the richest location with 15 taxa during the sampling period while the highest taxa were found in the autumn sampling with 16 taxa found in the lake. Oligochaeta was found predominantly at the station TK1, related to its freshwater feature. *Gammarus komareki*, Amphipoda, usually known from unpolluted water resources, was not found in the station TK1. In this study, Isopoda was presented by the species *Asellus aquaticus*, commonly known from freshwater ecosystems, and the species *Idothea baltica*, known from brackish waters. Chironomidae was a dominant group in the lake with 5 taxa. Two species *Chironomus plumosus* and *C. riparius* are known as indicator species for eutrophic ecosystems [48]. The low individual numbers belonging to

Odonata and Ephemeroptera supported the findings on organic loads. In this study, we observed only two species belonging to Odonata nymphs (*Crocothemis erythraea* and *Ischnura elegans*) and two taxa belonging to Ephemeroptera (Coenagrionidae and *Baetis* sp.). The other specimens belong to popular indicator groups for wetland ecosystems like Plecoptera and Trichoptera, which were not observed in the sampled aquatic ecosystem. These groups are known from nonpolluted areas. The results belonging to the benthic macro invertebrates in the lake show that the organic load entering the lake should be controlled. In the previous Gökçeada Salt Lake study, three Gastropod species (*Hydrobia ulvae*, *Bittium latreilli*, and *Bittium* sp.) and two Bivalve species (*Cerastoderma glaucum*, *Scrobicularia plana*) were reported [31]. In our current study, only two taxa belong to Gastropoda (Bithynidae and Planorbidae) are being reported. Many shells of Ostracoda were observed in the study area, but they were not evaluated quantitatively.

Viaroli et al. [49] emphasizes the lack of information comprising the relationship between river–wetland connectivity as a driver of zooplankton and macroinvertebrate communities. This study includes macroinvertebrates but zooplankton could not be studied which are often neglected in wetland studies [49]. Also, Brraich and Kaur [9] indicate that moderately polluted wetlands affect the occurrence of benthic macroinvertebrates.

Gönülal and Güreşen [24] reported 685 marine species from Gökçeada Island, except Peracarida and Polychaeta groups. Although only 131 species were found in this study due to the small sampling area and small tools, 71 species of them are newly recorded for marine fauna of Gökçeada Island.

In addition, 4 fishes, 12 reptilian species and 3 amphibian species were observed in the study area. According to the literature [26–29], 14 reptile species (3 turtles, 3 lizards, 8 snakes) are known from Gökçeada. But, 2 of those reptile species, *Emys orbicularis*, *Montivipera xanthina* species are not found in Salt Lake. A total of 143 bird species [30] and 178 bird species [32] were reported in Gökçeada. There is no detailed ornithological study at the Salt Lake. In this study, 71 bird species were observed during the sampling period. In fact, flamingos can be observed all year (except during the lake's dry season). However, human activities such as hunting, surfing and mud baths have negative effects on this area, preferred by flamingos. Almost 50 dead flamingos were also recorded during the bird watching.

Sulaiman et al. [8] reported that bird abundance and diversity is fundamentally affected by attributes of wetland size and type. Datry et al. [50] mentioned that the habitat mosaics, including the lotic, lentic and terrestrial, should make scientists responsible for integrating the concepts, under-

standing these ecosystems and managing them. In this sense, this study contributes to this opinion and includes marine wetland habitats. This study builds upon the central concept in ecology of disturbance, which is widely known to affect from populations to ecosystems [52].

Even though the present study reported a rich biodiversity despite the current human impacts in the Gökçeada Salt Lake, the area urgently needs protection through an effective conservation and management due to its importance to the island's biodiversity. Pollution may lead to the elimination of some macrobenthos while some may remain abundant due to higher tolerance to new conditions. Coastal areas have a high value in terms of biodiversity. Furthermore, these areas have a great appeal for tourism with potential for "eco-tourism." Therefore, wetlands are in a difficult situation stuck between ecological and management processes. Pérez-Ruzafa et al. [11] recommend developing close contact between researches and municipalities. Consequently, the composition of the communities in Gökçeada Salt Lake Wetland is a reflection of the health of the overall area. We hope this information can be used to design further strategies on conservation and management programmes. For a sustainable ecosystem, a management plan will be necessary in light of scientific wetlands research. As a conclusion, wetlands which are known as the most sensitive areas for biological diversity in the world, need to be protected by humans.

ACKNOWLEDGEMENTS

This research has been financially supported by TUBITAK (Project No: 115Y457). The authors wish to thank Bekir Bektas and Ozan Guresen who helped for sampling.

REFERENCES

- [1] Verones, F., Pfister, S., van Zelm, R., Hellweg, S. (2017) Biodiversity impacts from water consumption on a global scale for use in life cycle assessment. *The International Journal of Life Cycle Assessment*. 22(8), 1247–1256.
- [2] Anbucchezian, R., Rameshkumar, G., Ravichandran, S. (2009) Macrobenthic composition and diversity in the coastal belt of Thondi, southeast coast of India. *Global J. Environ. Res.* 3(2), 68–75.
- [3] Sharma, C., Rawat, J. S., (2009) Monitoring of aquatic macroinvertebrates as bioindicator for assessing the health of wetlands: A case study in the central Himalayas, India. *Ecol. Indic.* 9, 118–128.

[4] Ahmadi, R., Mohebbi, F., Hagigi, P., Esmaily, L., Salmanzadeh, R. (2011) Macroinvertebrates in the wetlands of the Zarrineh estuary at the south of Urmia Lake (Iran). *Int. J. Environ. Res.* 5(4), 1047–1052.

[5] Hazarika, L.P. (2013) Diversity indices of macroinvertebrates in the Satajan Wetland of Lakhimpur District, Assam. *Ann. Biol. Res.* 4(8), 68–72.

[6] Jurua, K.T., Pagel, I.A., Tavares, V.E., Sosinski, L.T.W. (2014) Structure and composition of the benthic macroinvertebrate community on wetland and irrigated rice cultivation. *Acta Limnologica Brasiliensis.* 26(3), 229-234.

[7] Patial, P., Hassan, M.A., Mishra, A.P. (2015) Macrobenthic diversity during pre and post drought period of floodplain wetlands in Vaishali district of Bihar. *Int. J. Appl. Biol. Pharm. Technol.* 6(2), 294–298.

[8] Sulaiman, I.M., Abubakar, M.M., Ringim, A.S., Apeverga, P.T., Dikwa, M.A. (2015) Effects of wetlands type and size on bird diversity and abundance at the Hadejia-Nguru wetlands, Nigeria. *International J. of Research Studies in Zoology.* 1(1), 15-21.

[9] Brraich, O.S., Kaur, R. (2017) Temporal composition and distribution of benthic macroinvertebrates in wetlands. *Current Science.* 112(1), 116-125.

[10] Çamur-Elipek, B., Kırgız, T. (2011) The Evaluation of Some Limnological Features of the Lagoon Lakes in European Part of Turkey. In: *Biology, Management and Environmental Impact* (Editor: Friedman, A.G.) Nova Science Publishers, Inc. Hauppauge, N.Y., USA, 493 pp.

[11] Pérez-Ruzafa, A., Marcos, C., Pérez-Ruzafa, I.M. (2011) Mediterranean coastal lagoons in an ecosystem and aquatic resources management context. *Physics and Chemistry of the Earth Parts AB,* 36, 160–166.

[12] Yerli, S. (1999) *Türkiye Lagünlerine Genel Bir Bakış.* In: Demirsoy, A. (Ed.) *Genel ve Türkiye Zoocoğrafyası.* Ankara, Türkiye, Metaksan press., 465-474.

[13] Sıvacı, E. R., Çankaya, E., Kılıç, S., Dere, Ş. (2008) Seasonal assessment of epiphytic diatom distribution and diversity in relation to environmental factors in a karstic lake (Central Turkey). *Nova Hedwigia.* 86(1-2), 215-230.

[14] Williams, M. (1990) *Wetlands: A Threatened Landscape.* Cambridge and Oxford, England, Blackwell Press. 432 pp.

[15] Görmez, K. (1997) *Çevre Sorunları ve Türkiye.* Ankara, Turkey, Gazi Kitabevi Press, 88p.

[16] Arı, Y. (2006) The Ramsar Convention on Wetlands: A Critical Review. *Doğu Coğrafya Dergisi,* 11(15), 275-302.

[17] Anonymous (2012) *Gökçeada Lagoon.* T.C. Ministry of Forest and Water Affairs. General Directorate of Nature Conservation and National Parks. Department of Sensitive Areas. Çanakkale, Turkey, Çanakkale Branch Office Press. 88p.

[18] Seçmen, Ö., Leblebici, E. (1978) *Gökçeada ve Bozcaada Adalarının Vejetasyon ve Florası II- Flora Bitki.* 5(3), 271-368.

[19] Gülen, D. (1985) The species and distribution of the group Podocopa (Ostracoda-Crustacea) in the fresh waters of western Anatolia. *Istanbul Üniversitesi Fen Fakültesi Mecmuası* (B). 50, 65-80.

[20] Balık, S., Ustaoğlu, M.R. (1993) A preliminary investigation on freshwater fauna of Gökçeada (Imroz) Island. *Biologia Gallo-Hellenica,* 20(1), 299-303.

[21] Özkan, N. (2006) The larval Chironomidae (Diptera) fauna of Gökçeada (Imbroz). *G.U. Journal of Science.* 19(2), 69-75.

[22] Ketmaier, V., Pirolo, D., De Matthaeis, E., Tiedemann, R., Mura, G. (2008) Large-scale mitochondrial phylogeography in the halophilic fairy shrimp *Phallocryptus spinosa* (Milne-Edwards, 1840) (Branchiopoda: Anostroca). *Aquatic Sciences.* 70(1), 65-76.

[23] Mura, G., Özktük, S.R., Aygen, C., Cottarelli, V. (2011) New data on the taxonomy and distribution of anostracan fauna from Turkey. *J. Biol Res-Thessalon.* 15, 17-23.

[24] Gönüllal, O., Güreşen, S.O. (2014) A list of macrofauna on the continental shelf of Gökçeada Island (northern Aegean Sea) with a new record (*Gryphus vitreus* Born, 1778) (Branchiopoda, Rhynchonellata) for the Turkish seas. *Journal of Black Sea/Mediterranean Environment.* 20(3), 228-252.

[25] Isinibilir Okyar, M., Martell, L., Topçu, E.N., Yilmaz, I.N., Piraino, S. (2015) First inventory of the shallow-water benthic hydrozoan assemblages of Gökçeada Island (northern Aegean Sea). *Italian Journal of Zoology.* 82(2), 281-290.

[26] Başoğlu, M., Baran, İ. (1980) *Türkiye Sürüngeçleri, Kısım II: Yılanlar.* Bornova, İzmir, Ege Üniv. Fen-Fak. Press. 218p.

[27] Baran, İ. (1981) Kuzey Ege Denizi, Marmara Denizi ve Karadeniz'deki adalarımızın herpetofaunasının taksonomik ve ekolojik araştırılması. *Doğa Bil. Der.* 5, 155-162.

[28] Broggi, M.F. (1999) Notizen zur herpetofauna der Ägäisinsel Gökçeda. *Herpetozoa,* 12(1-2), 73-78.

[29] Habiboglu, K., Çiçek, K., Tok, C.V. (2016) A case of melanism in the Grass snake, *Natrix natrix* (L., 1758) (Reptilia: Colubridae) from Gökçeada (Imbros) Turkey. *Biharean Biologist.* 10(1), 60-61.

[30] Sevim, İ. (2007) Observations on bird populations and habitat relations of islands in Çanakkale (Master Thesis). 18 Mart University, Çanakkale, Turkey.

[31] Bassler-Veit, B., Barut, I.F., Meric, E., Avsar, N., Nazik, A., Kapan-Yeşilyurt, S., Yıldız, A. (2012) Distribution of microflora, meiofauna, and macrofauna assemblages in the hypersaline environment of northeastern Aegean Sea coasts. *J. Coast. Res.* 29(4), 883-898.

[32] Samsa, Ş. (2014) Gökçeada'nın kuşları. In: Öztürk, B., Pazarkaya, Y. (Eds.) *Gökçeada Doğa ve Kültür Varlıklarları*. İstanbul, Türkiye, pp. 155-180.

[33] Round, F.E. (1953) An investigation of two benthic algal communities in Malham Tarn, Yorkshire. *Jour. of Ecol.* 41, 174–197.

[34] Sládečkova, A. (1962) Limnological investigation methods for the periphyton (aufwuchs) community. *Bot. Rev.* 28, 286–350.

[35] Guillard, R.R.Y. (1978) Counting slides. In: Sournia, A. (Ed.) *Phytoplankton manual*. Paris, France, UNESCO Press. 182-189.

[36] Aysel, V. 2005. Check-List of the Freshwater Algae of Turkey. *Journal of the Black Sea/Mediterranean Environment*, 11(1), 1-124.

[37] Guiry, M.D. & Guiry, G.M. 2018. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. <http://www.algaebase.org>; searched on 27 February 2018.

[38] Brinkhurst, R.O., Jamieson, B.G.M. (1971) *Aquatic Oligochaeta of the World*. Toronto, Canada, University of Toronto Press. 860p.

[39] Karaman, G.S., Pinkster, S. (1977a) Freshwater *Gammarus* species from Europe, North Africa and adjacent regions of Asia (Crustacea, Amphipoda) Part I *Gammarus pulex*-group and related species. *Bijdr Dierkd.* 47, 1-97.

[40] Karaman, G.S., Pinkster, S. (1977b) Freshwater *Gammarus* species from Europe, North Africa and adjacent regions of Asia (Crustacea, Amphipoda) Part II *Gammarus roeseli*-group and related species. *Bijdr Dierkd.* 47, 165-196.

[41] Karaman, G.S., Pinkster, S. (1987) Freshwater *Gammarus* species from Europe, North Africa and adjacent Regions of Asia (Crustacea-Amphipoda) Part III *Gammarus balcanicus*-group and related species. *Bijdragen Tot de Dierkunde*. 57, 207-260.

[42] Wetzel, M.J., Kathman, R.D., Fend, S.V., Coates, K.A. (2000) Taxonomy, systematics, and ecology of freshwater Oligochaeta. In: Workbook prepared for North American Benthological Society Technical Information Workshop, 48th Annual Meeting, Keystone Resort, CO., 120p.

[43] Çamur, B., Kırgız, T. (2000) Freshwater Isopod Species (Crustacea) in Turkish Thrace and Their Distribution. *Turkish Journal of Zoology*, 24, 17-22.

[44] Hacet, N., Çamur-Elipek, B., Kırgız, T. (2009) A study on the Odonate larvae of Turkish Thrace: with larval identification keys to the considered taxa. *Journal of the Entomological Research Society*. 12(2), 57-74.

[45] WoRMS (2017) World Register of Marine Species. Available. Retrieved from <http://www.marinespecies.org>.

[46] Karadeniz, N., Tiril, A., Baylan, E. (2009) Wetland management in Turkey: problems, achievements and perspectives. *African Journal of Agricultural Research*. 11, 1106-1119.

[47] Jones, S.M., Pinder, A.M., Sim, L.L., Halse, S.A. (2009) Evaluating the conservation significance of inundated basin wetlands within the Avon Natural Resource Management region: Stage Three Assessment Method. Prepared for the Avon Catchment Council by the Department of Environment and Conservation, Perth.

[48] Armitage, P.D., Cranston, P.S., Pinder, L.C.V. (1995) *The Chironomidae: Biology and Ecology of Non-Biting Midges*. London, England, Chapman and Hall Press. 572p.

[49] Viaroli, P., Bartoli, M., Vymazal, J. (2016) Preface: Wetlands biodiversity and processes—tools for conservation and management. *Hydrobiologia*. 774(1), 1-5.

[50] Datry, T., Larned, S. T., Tockner, K. (2014) Intermittent rivers: a challenge for freshwater ecology. *BioScience*. 64(3), 229-235.

[51] Epler, J.H. (2001) Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. Crawfordville press. 53p.

[52] Rosset, V., Ruhi, A., Bogan, M. T., Datry, T. (2017) Do lentic and lotic communities respond similarly to drying? *Ecosphere*. 8(7), e01809.

Received: 18.9.2017
Accepted: 12.02.2018

CORRESPONDING AUTHOR

Herdem Aslan

Department of Fisheries Technology,
Gokceada School of Applied Sciences,
Canakkale Onsekiz Mart University,
Canakkale – Turkey

e-mail: asherdem@comu.edu.tr